

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

ISSN: 2349 - 6363
47

Design of 2x2 Mimo OFDM Architecture for Fixed

WIMAX
S Ganeshkumar

K.S.Rangasamy College of Technology,

Tiruchengode, Tamil Nadu, India.

ganeshme1990@gmail.com

S Venkatesh
K.S.Rangasamy College of Technology,

Tiruchengode, Tamil Nadu, India.

srivenkatesh2010@yahoo.com

Abstract- Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing technology is an

advanced transmission technique for wireless communication systems. In this paper, the 64 point pipeline

FFT/IFFT processor is introduced for efficient implementation of OFDM architecture. The IFFT processor

is used to modulate the subcarrier in transmitter section and FFT processor demodulate the subcarrier in

receiver section in the architecture. Our design adopts a single-path delay feedback style requiring less

memory space and reconfigurable complex constant multiplier and bit parallel multiplier used in pipeline

FFT/IFFT processor, instead of using ROM’s to store twiddle factors that consuming lower power. The

design of ROM-less FFT/IFFT processor is applied to OFDM architecture with different encoding and

decoding techniques analysis in the IEEE 802.16d communication standard. The result shows overall

architecture design using the ROM-less FFT/IFFT processor with convolutional encoding and decoding

gives efficient power, area and timing specifications considerably.

Keywords-MIMO, OFDM, FFT, IFFT.

I. INTRODUCTION

The rapid growth of digital communication in recent years, which need for high-speed data transmission, has
been increased. The mobile telecommunications industry faces the problem of providing the technology that be
able to support a variety of services ranging from voice communication with a bit rate of a few kbps to wireless
multimedia in which bit rate up to 2 Mbps. Many systems have been proposed and OFDM system has gained much
attention for different reasons. Although OFDM was first developed in the 1960s, only in recent years, it has been
recognized as an outstanding method for high-speed cellular data communication where its implementation relies
on very high-speed digital signal processing. This method has only recently become available with reasonable
prices versus performance of hardware implementation.

Generally, the pipeline FFT processors have two popular design types. One uses single-path delay feedback
(SDF) pipeline architecture and the other uses multiple-path delay commutator (MDC) pipeline architecture. The
single-path delay feedback (SDF) pipeline FFT is good in its requiring less memory space (about N-1 delay
elements) and its multiplication computation utilization being less than 50%, as well as its control unit being easy
to design. Such implementations are advantageous to low-power design, especially for applications in portable DSP
devices. Based on these reasons, the SDF pipeline FFT is adopted in our work. However, the FFT computation
often needs to multiply input signals with different twiddle factors for an outcome, which results in higher hardware
cost because a large size of ROM is needed to store the wanted twiddle factors. Therefore, to throw off these ROM’s
for area-efficient consideration, Mao-Hsu Yen, have proposed an efficient ROM-less FFT/IFFT processor. The
complex multipliers used in the processor are realized with shift-and-add operations. Hence, the processor uses
only a two-input digital multiplier and does not need any ROM for internal storage of coefficients. However, low
speed and higher hardware cost caused by the proposed complex multiplier are the pay-off.

Chu Yu and Mao-Hsu Yen have proposed the design of Low-Power 64-point Pipeline FFT/IFFT Processor for
OFDM Applications. This design adopts a single-path delay feedback style as the proposed hardware architecture
to eliminate the read-only memories (ROM’s) used to store the twiddle factors. R.Premalatha and M.Shanthi has
proposed the design of 2x2 MIMO-OFDM System on FPGA. FPGA implementation is carried with good channel
estimation method, efficient FFT/IFFT processor and better coding techniques. In MIMO-OFDM systems, the
information bits are carried by the transmitter and receiver section. Here transmitter contains scrambler, encoder,
interleaver, modulation, IFFT processor, pilot insertion, adding cyclic prefix and preamble then convert into the RF
frequency to the antenna. The reverse operation is performed in the receiver section. In order to reduce the area and
power consumption in the FFT processor, the overall architecture chip area is minimized. That will give the efficient
OFDM architecture for reliable data transmission.

This paper is organized as follows. In section II, the system block diagram of the MIMO-OFDM is shown,
which presents each block design explanation in the OFDM systems including the proposed pipeline FFT/IFFT
processor for application in wireless communication systems. In section III, Simulation results, area and power
report analysis. Finally, Conclusions are in section IV.

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

48

II. OFDM ARCHITECTURE

The architecture of the transmitter and receiver is illustrated in Figure 1 and Figure 2 respectively [2], [3]. The

bit stream which has been scrambled and interleaved is separated into spatial streams by stream parser. Then the

spatial streams are mapped into constellation. The points on the constellation are through the STBC encoder to

transform the spatial streams to space-time streams. After that spatial mapper maps space-time streams into transmit

chains. And the transmit chains are inserted pilot IFFT modulated, added CP (Cyclic Prefix), then transmitted

through the RF modules. The transmitted signals are received through RF modules and remove CP. The received

chains are FFT modulated, pilot extraction, channel estimation and passed through the STBC decoder to transform

to spatial streams from space-time stream. The spatial streams are demapped, interleaved, and descrambled to get

the original bit stream.

A. Scrambler and Descrambler

A scrambler is a device that describes randomizes the data stream to remove repeated patterns. In the transmitter,

a pseudorandom cipher sequence is added to the data sequence to produce a scrambled data sequence. [4] The

pseudorandom cipher sequence is described by the generating polynomial G(x) = X11 + X9 + 1. In the receiver,

the same pseudorandom cipher sequence is subtracted from the scrambled data sequence to recover the transmitted

data sequence. The information bits are randomized before the transmission. The randomizer, which is the first

block in the transmitter, performs randomization of input data on each burst on each allocation to prevent a long

sequence of 1's and 0's. This is implemented by using a Pseudo Random Binary Sequence (PRBS) generator. By

using descrambler section the data sequence is retrieved from the scrambled data by reversing the operation.

Figure 1. OFDM Architecture of the Transmitter

Figure 2. OFDM Architecture of the Receiver

B. Interleaver and Deinterleaver

Interleaving is frequently used in digital communication and storage systems to improve the performance
of forward error correcting codes. Many communication channels are not memoryless errors typically occur
in bursts rather than independently. If the number of errors within a code word exceeds the error-correcting code's
capability, it fails to recover the original code word. Interleaving ameliorates this problem by shuffling source
symbols across several code words, thereby creating a more uniform distribution of errors. The deinterleaving gives
reverse shuffling operation of transmitted signals.

C. Modulation and Demodulation

The Modulator passes interleaved data through a serial to parallel converter, mapping groups of bits to separate
carriers, and encoding each bit group by frequency, amplitude, and phase. The QPSK is a phase modulation scheme,
used in constellation mapping [6]. The constellation map of QPSK modulator is shown in Figure 3. Here the input
bits stream is converted into complex stream using equation (1) and where I and Q both are in phase with I-out and
Q-out respectively are shown in table I. QPSK modulator accepts the binary bits as inputs consider as a symbol and

http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Burst_error
http://en.wikipedia.org/wiki/Code_word
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

49

converts them into complex value. QPSK takes only 4 symbols and generate its complex value in this fashion
because the bit rate is ½.

D = (I +jQ)*KMOD where KMOD = 1/1.414 (1)

 Figure 3. QPSK Constellation Mapping Figure 4. Pilot insertion in Subcarriers

TABLE I INPUTS AND OUTPUTS OF QPSK MODULATOR

Input Bits I out Q out

00 -1 -1

01 -1 +1

10 +1 -1

11 +1 +1

D. STBC Encoder

Space time block coding is a technique used in wireless communications to transmit multiple copies of a data
stream across a number of antennas and to exploit the various received versions of the data to improve the reliability
of data-transfer. Alamouti’s transmit diversity scheme with two transmit antennas and two receive antennas are
used. [10] Alamouti’s scheme is a space-time block code and suitable when two transmit antennas and an arbitrary
number of receive antennas are used.

E. Pilot Insertion

Pilot insertion adds the values for pilot and guard subcarriers to OFDM symbols. A transmitting entity transmits
a “base” pilot in each protocol data unit (PDU). A receiving entity is able to derive a sufficiently accurate channel
response estimate of a MIMO channel with the base pilot under nominal (or most) channel conditions. The
transmitting entity selectively transmits an additional pilot if and as needed, e.g. (Figure 4), based on channel
conditions and/or other factors. The additional pilot may be adaptively inserted in almost any symbol period in the
PDU. The receiving entity is able to derive an improved channel response estimate with the additional pilot. The
transmitting entity sends signaling to indicate that additional pilot is being sent. [5] This signaling may be embedded
within pilot symbols sent on a set of pilot sub bands used for a carrier pilot that is transmitted across most of the
PDU. The signaling indicates whether additional pilot is being sent and possibly other pertinent information.

F. Cyclic Prefix and Preamble
The cyclic prefix refers to the prefixing of data with a repetition of the end. As a guard interval, it eliminates

the inter symbol interference from the previous data. It allows the linear convolution of a frequency-selective
multipath channel to be modeled as circular convolution, which in turn may be transformed to the frequency domain
using FFT. This approach allows for simple frequency-domain processing, such as channel estimation and
equalization. [10] Preamble is used for synchronization and channel estimation at the receiver.

G. FFT/IFFT Processor

a) Rom-Less FFT/IFFT Processor

Traditional hardware implementation of FFT/IFFT processors usually employs a ROM to look up the wanted
twiddle factors, and then word length complex multipliers to perform FFT computing. However, this introduces
more hardware cost, thus a bit-parallel complex constant multiplication scheme is used to improve the foregoing
issue. Besides, since the twiddle factors have a symmetric property. The complex multiplications used in FFT
computation is one of the following three operation types [1]:

Type1: WN
k. (a + jb) = WN

k−(N 4⁄)
. (b − ja), N 4 < 𝑘 < N 2⁄ ,⁄ (2)

Type2: WN
k. (a + jb) = −WN

k−(N 2⁄)
. (b − ja), N 2 < 𝑘 < 3 N 4⁄ ,⁄ (3)

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

50

Type3: WN
k. (a + jb) = −WN

k−(3N 4⁄)
. (b − ja), 3N 4 < 𝑘 < N,⁄ (4)

Any twiddle factor can be obtained by a combination of these twiddle-factor primary elements. In other words,
arbitrary twiddle factor used in FFT can utilize these operation types to derive the wanted value, thus can
significantly shorten the size of ROM used to store the twiddle factors. Moreover, for hardware implementation
consideration, we add two extra operation types to further decrease the size of ROM. Our method can also run away
the critical path in the designed hardware such that the system clock becomes faster compared to [7]-[9]. The two
additional operation types are given by:

Type 4: 𝑊𝑁
𝑘 . (𝑎 + 𝑗𝑏) = [𝑊𝑁

(𝑁 4)−𝑘⁄
. (𝑏 + 𝑗𝑎)] , 1 ≤ 𝑘 < 𝑁 4⁄ , (5)

Type 5: 𝑊𝑁
𝑘 . (𝑎 + 𝑗𝑏) = −𝑗. [𝑊𝑁

(𝑁 2)−𝑘⁄
. (𝑏 + 𝑗𝑎)] , 𝑁 4⁄ < 𝐾 < 𝑁 2, ⁄ (6)

A radix-2 64-point pipeline FFT/IFFT processor with low power consumption, as shown in Figure 5. [1], [3]
The proposed architecture is composed of three different types of processing elements (PEs), a complex constant
multiplier, delay-line (DL) buffers, and some extra processing units for computing IFFT. Here, the conjugate for
extra processing units is easy to implement, which only takes the 2’s complement of the imaginary part of a complex
value.

b) Processing Elements

Based on the radix-2 FFT algorithm, the three types of processing elements (PE3, PE2, and PE1) used in our
design are illustrated in Figure 6, Figure 7, and Figure 8, respectively. The functions of these three PE types
correspond to each of the butterfly stages as shown in Figure 5. First, the PE3 stage is used to implement a simple
radix-2 butterfly structure only, and serves as the sub modules of the PE2 and PE1 stages.

Figure 5. PE Types to Each of the Butterfly Stages Figure 6. Circuit Diagram of PE3 Stage
In the Figure 6, Iin and Iout are the real parts of the input and output data, respectively. Qin and Qout denote

the image parts of the input and output data, respectively. Similarly, DL_Iin and DL_Iout stand for the real parts of
input and output of the DL buffers, and DL_Qin and DL_Qout are for the image parts, respectively.

Figure 7. Circuit Diagram of PE2 Stage Figure 8. Circuit diagram of our proposed PE1 stage

As for the PE2 stage, it is required to compute the multiplication by –j or 1. Note that the multiplication by -1

in figure 5 is practically to take the 2’s complement of its input value. In the PE1 stage, the calculation is more

complex than the PE2 stage, which is responsible for computing the multiplications by -j, WN N/8, and WN 3N/8,

respectively.

Since WN 3N/8 = -j WN N/8, it can be given by either the multiplication by WN N/8 first and then the

multiplication by –j or the reverse of the previous calculation. Hence, the designed hardware utilizes this kind of

cascaded calculation and multiplexers to realize all the necessary calculations of the PE1 stage. This manner can

also save a bit-parallel multiplier for computing WN 3N /8, which further forms a low-cost hardware.

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

51

c) Bit-Parallel Multipliers

In this section the multiplication by 1/ 2 can employ a bit parallel multiplier to replace the word length multiplier
and square root evaluation for chip area reduction.

Output = in × √2

2
= 𝑖𝑛 × (2−1 + 2−3 + 2−4 + 2−6 + 2−8 + 2−14) (7)

If a straightforward implementation for the above equation is adopted, it will introduce a poor precision due to
the truncation error, and will spend more hardware cost. Therefore, to improve the precision and hardware cost, Eq.
(7) can be rewritten as:

Output = in × √2

2
= 𝑖𝑛 × [1 + (1 + 2−2)(2−6 + 2−2) (8)

According to (8), the circuit diagram of the bit-parallel multiplier is illustrated in figure 9. The resulting circuit
uses three additions and three barrel shift operations. The realization of complex multiplication by WNN/8 using a
radix-2 butterfly structure with its both outputs commonly multiplied by 1/ √2 is shown in Figure 10. This circuit
has just been used in the PE1 stage.

 Figure 9. Circuit diagram of the Bit-Parallel Multiplication by 1/ √2 Figure 10. Circuit diagram of the multiplication by WN
N/8

d) Reconfigurable Complex Constant Multipliers

A reconfigurable complex constant multiplier for computing Wi64 is proposed, as shown in Figure 9 and Figure
10. This structure of this complex multiplier also adopts a cascaded scheme to achieve low-cost hardware. Here,
the meaning of two input signals (Iin and Iout) and two output signals (Qin and Qout) are the same as the signals
in the PE1 stage. In Figure 11, this circuit is responsible for the computation of multiplication by a twiddle factor
Wi64, which is also an important circuit of our FFT/IFFT processor. The word length multiplier used in Figure 12
adopts a low-error fixed width modified Booth multiplier for hardware cost reduction.

Figure 11. Proposed Reconfigurable Complex Constant Multiplier

The coefficient values i1-i8 and q1-q8 are listed in Table I, which can be used to synthesize the entire twiddle
factors required in our proposed 64-point FFT processor. Besides, we need not to use bit-parallel multipliers to
replace the word length one for two reasons. One is on the operation rate.

If bit-parallel multipliers are used, the clock rate is decreased due to the many cascaded adders. The other reason

is the introduction of high wiring complexity because many bit-parallel multipliers are required to be switched for

performing multiplication operations with different twiddle factors. Besides, we need not to use bit-parallel

multipliers to replace the word length one for two reasons. One is on the operation rate. If bit-parallel multipliers

are used, the clock rate is decreased due to the many cascaded adders.

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

52

Figure 12. Block Diagram for Hamming Encoder

H. Analysis of Encoding and Decoding Techniques

When data is transmitted from one location to another there is always the possibility that an error may occur.
There are a number of reliable codes that can be used to encode data so that the error can be detected and corrected.
By using decoding techniques the redundant information to detect and correct errors occurred during transmission.

a) Hamming Encoding and Decoding

A Hamming Code can be used to detect and correct one bit change in an encoded code word. The block diagram
is shown in Figure 13 where H[0]-H[3] are the original information bits and H[4]- H[7] are the parity bits.[12]. This
approach can be useful as a change in a single bit is more probable than a change in two bits or more bits. The 8
bits output from the deinterleaving block are fed into the Hamming decoder in parallel shown in Figure 14. The
counter controls MUX1 to select 4 out of 8 input data bits to perform the XOR operation. According to the
properties of the (8, 4) Hamming coding, 5 XOR operations with different sets of input are necessary to perform
error checking. After all the five different XOR operations is done, the XOR result is fed into the error checking
module. At the same time, the 4 bits LSB of the input codewords and their inversions are ready at the input of
MUX2. According to the XOR results, the error checking module decides whether there are errors in the received
signal bits and indicates toMUX2 which output bit needs to be flipped. Finally, the correct 4-bit information
codewords are selected and fed into the RXFIFO.

 Figure 13. Block Diagram for Hamming Encoder Figure 14. Block diagram of Hamming decoder.

b) Convolutional Encoding and Viterbi Decoding

A convolutional code introduces redundant bits into the data stream through the use of linear shift registers. The
information bits are input into shift registers and the output encoded bits are obtained by modulo-2 addition of the
input information bits and the contents of the shift registers. The block diagram is shown in Figure 15.

 Figure 15. Block Diagram of Convolutional Encoder

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

53

The Viterbi decoding is the best known implementation of the maximum likely-hood decoding [13]. The Viterbi
decoder examines an entire received sequence of a given length. There are three units were considered in the viterbi
decoding. Those are Branch Metric Unit (BMU), Path Metric Unit (PMU), and Survivor Memory Unit(SMU). The
BMU calculates the distances from the received (noisy) symbols to all legal codewords. The PMU accumulates the
distances of the single codeword metrics produced by the BMU for every state.

Under the assumption that zero or one was transmitted, corresponding branch metrics are added to the
previously stored path metrics which are initialized with zero values. The resulting values are compared with each
other and the smaller value is selected and stored as the new path metric for each state. In parallel, the corresponding
bit decision (zero or one) is transferred to the SMU while the inverse decision is discarded. Finally, the SMU stores
the bit decisions produced by the PMU for a certain defined number of clock cycles and processes them in a reverse
manner called backtracking. Starting from a random state, all state transitions in the trellis will merge to the same
state after TBD (or less) clock cycles. From this point on, the decoded output sequence can be reconstructed.

c) Convolutional Encoding and Sequential Decoding

The convolutional encoder gives the information bits are input into shift registers and the output encoded bits
are obtained [13]. In receiver section instead of viterbi decoding the sequential decoding technique are used. In
Sequential decoding are dealing with just one path at a time. It may give up that path at any time and turn back to
follow another path but important thing is that only one path is followed at any one time. Sequential decoding
allows both forwards and backwards movement through the trellis. The decoder keeps track of its decisions, each
time it makes an ambiguous decision, and it tallies it. If the tally increases faster than some threshold value, decoder
gives up that path and retraces the path back to the last fork where the tally was below the threshold.

III. SIMULATION AND SYNTHESIS RESULTS

The simulation of OFDM architecture was described in VHDL and the simulation was done in ModelSim and

the code was functionally verified to be correct. The simulation results of different coding techniques using the

OFDM architecture are shown in the Figure 16, 17, 18, and 19 respectively.

Figure 16. Simulation result of Radix-2 64 Point Pipeline FFT/IFFT processor

Figure 17. Simulation result of MIMO OFDM architecture using Hamming Encoder and Decoder

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

54

Figure 18. Simulation result of MIMO OFDM architecture using Convolutional Encoder and Viterbi Decoder

Figure 19. Simulation result of MIMO OFDM architecture using Convolutional Encoder and Sequential Decoder

A. Power and Area Report Analysis

The power and area analysis were done in Synopsys EDA tool and was found that for OFDM architecture, the
total dynamic power and area specifications were met. The below shown result describes the power and area
analysis and the result was found that for an OFDM architecture using Synopsys Design Compiler tool. The Table
II describes the detailed comparison of area utilization and power consumption of FFT/IFFT processor design and
the Table III describes the detailed area utilization and power consumption for different coding techniques of all
devices in the architecture.

TABLE II Comparison of 64 point FFT/IFFT PROCESSOR REPORT

Design
Word

Length

Gate

Counts
Technology Power

 [1] 16 33590 180nm 9.79mW

Ours 16 12604 120nm 1.6184mW

TABLE III AREA AND POWER REPORT ANALYSIS

Description
Transmitter Receiver

Area

(nm2)
Power (mW)

Area

(nm2)
Power (mW)

Hamming Encoding and Decoding 13701.4 2.6393 13392.7 3.6456

Convolutional Encoding and Viterbi Decoding 13421.7 3.3227 14262.7 3.8017

Convolutional Encoding and Sequential Decoding 13421.7 3.3227 13307.9 2.0228

International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013

55

IV. CONCLUSION

The efficient MIMO-OFDM system architecture is described in this work. Considering all the blocks in the
architecture were designed especially reconfigurable complex constant multiplier and bit parallel multiplier was
designed for pipeline FFT/IFFT block in order to reduce the size of twiddle factor ROM. The result of OFDM
architecture shows that the design meets the efficient power, area and timing specifications. Using Synopsys tool
the architecture using convolutional encoding and sequential decoding consumes 3.3227mW power for transmitter
and 2.0228mW power for receiver section. The transmitter design contains 13421.7 numbers of logic cells and
13307.9 numbers of logic cells for receiver design. From the analysis of coding techniques the result shows that the
architecture using convolutional encoding and sequential decoding gives the efficient power and area specifications
that improves the performance of the OFDM architecture for fixed WIMAX applications.

REFERENCES

[1] Chu Yu, Mao-Hsu Yen, Pao-Ann Hsiung, Sao-Jie Chen, “A Low-Power 64-point Pipeline FFT/IFFT Processor for

OFDM Applications”, IEEE Transactions on Consumer Electronics, vol. 57, No. 1, 2011.

[2] Zoha Pajouhi, Sied Mehdi Fakhraie, Sied Hamidreza Jamali, “IEEE Hardware Implementation of a 802.lln MIMO OFDM

Transceiver”, International Symposium on Telecommunication, 2008.

[3] R.Premalatha and M.Shanthi, “VLSI Implementation of a 2x2 MIMO-OFDM System on FPGA”, Bonfring International

Journal of Power Systems and Integrated Circuits, vol. 2, Special Issue 1, 2012.

[4] Alistair Coles, “Scrambler and Descrambler Functions (Informative)”, 1997.

[5] Ian Griffiths and Brett Ninness, “FPGA Implementation of MIMO Wireless Communications system”, 2005.

[6] Sudhakar Reddy Penubolu and Ramachandra Reddy Gudheti, “VLSI Implementation of Least Square Channel Estimation

and QPSK Modulation Technique for 2×2 MIMO System”, 2009.

[7] Chin-Teng Lin, Yuan-Chu Yu, and Lan-Da Van, “A low-power 64-point FFT-IFFT design for IEEE 802.11a WLAN

application,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2006, pp. 4523-4526.

[8] Yuan Chen, Yu-Wei Lin, and Chen-Yi Lee, “A Block Scaling FFT/IFFT Processor for WiMAX Applications”, in Proc.

IEEE Asian Solid-state Circuits Conf., 2006, pp. 203-206.

[9] Bruno Fernandes. Helena Sarmento, “FPGA implementation and testing of a 128 FFT for a MB-OFDM receiver”, Analog

Integr Circ Sig Process, 2012.

[10] Samar Jyoti Saikia, Kandarpa Kumar Sarma, “ANN based STBC-MIMO set-up for Wireless Communication”,

International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN), ISSN No. 2248-9738 ,vol. 1, Issue 3, 2012.

[11] Nikolaos Bartzoudis, Oriol Font-Bach, Antonio Pascual-Iserte and David López Bueno, “Real-Time FPGA-based mobile

WiMAX transceiver supporting multi-antenna configurations”, Argentine School of Micro-Nanoelectronics, Technology

and Applications, 2011.

[12] Xin Liu, Yuanjin Zheng,, Bin Zhao, Yisheng Wang, and Myint Wai Phyu, “An Ultra Low Power Baseband Transceiver

IC for Wireless Body Area Network in 0.18-umCMOS Technology”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, No. 8, 2011.

[13] Irfan Habib, Özgün Paker, and Sergei Sawitzki, “Design Space Exploration of Hard-Decision Viterbi Decoding:

Algorithm and VLSI Implementation”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18,

No. 5, 2010.

